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Abstract 17 
The strong reliance of most utility services on centralised network infrastructures is becoming 18 
increasingly challenged by new technological advances in decentralised alternatives. However, 19 
not enough effort has been made to develop planning tools designed to address the implications 20 
of these new opportunities and to determine the optimal degree of centralisation of these 21 
infrastructures. We introduce a planning tool for sustainable network infrastructure planning 22 
(SNIP), a two-step techno-economic heuristic modelling approach based on shortest path-finding 23 
and hierarchical-agglomerative clustering algorithms to determine the optimal degree of 24 
centralisation in the field of wastewater management. This SNIP model optimises the distribution 25 
of wastewater treatment plants and the sewer network outlay relative to several cost and sewer-26 
design parameters. Moreover, it allows us to construct alternative optimal wastewater system 27 
designs taking into account topography, economies of scale as well as the full size range of 28 
wastewater treatment plants. We quantify and confirm that the optimal degree of centralisation 29 
decreases with increasing terrain complexity and settlement dispersion while showing that the 30 
effect of the latter exceeds that of topography. Case study results for a Swiss community indicate 31 
that the calculated optimal degree of centralisation is substantially lower than the current level.  32 
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1 Introduction 33 

1.1 Sustainable Network Infrastructure Planning (SNIP) 34 

In the last two centuries, many physical network infrastructures of various types have been built 35 
worldwide.1 This implementation of extensive networks was accompanied by a widely shared 36 
conviction in expert and policy circles that technological centralisation would generally lead to 37 
superior solutions (Graham and Marvin 2001). As a consequence, an “expand and upgrade” 38 
philosophy became predominant (Moss 2001). This approach leads to biased economic 39 
incentives because actors tend to base their decisions on economies of scale in the cost of a 40 
centralised wastewater plant, while neglecting the economies of scale at the level of the entire 41 
network, which are, as a rule, much more difficult to assess (Maurer et al. 2012). As a 42 
consequence, centralisation always seems to be the preferred solution for decision makers. More 43 
recently, however, new context conditions have led to this generally received wisdom being 44 
questioned (Marlow et al. 2013). Reasons for questioning the sustainability of the centralised 45 
approach include shrinking public budgets and subsidies as well as the massive maintenance and 46 
restoration costs of centralised systems (Maurer and Herlyn 2006).Furthermore, new 47 
technological advances such as remotely operating measuring devices and membrane 48 
technology challenge the centralised approach as they increasingly help decentralised technology 49 
to be considered as a fully functional substitute for centralised infrastructures (Libralato et al. 50 
2012).  51 

We assume that decentralised alternatives can already, or will soon be able to, deliver utility 52 
services of comparable quality, which means that the superiority of the centralised paradigm can 53 
no longer be taken for granted, and questions about the optimal degree of centralisation (ODC) 54 
need to be addressed. A shift to a decentralised approach has broad economic, technical and 55 
environmental implications (e.g. environmental risks) which need to be addressed elsewhere in 56 
the literature (inter alia Libralato et al. 2012, Poustie et al. 2014). In the present paper, we 57 
introduce the Sustainable Network Infrastructure Planning (SNIP) approach, which consists of a 58 
single objective cost-optimisation algorithm designed to determine the ODC for wastewater 59 
systems. We start from the assumption that we do not have to choose either a purely centralised 60 
or a purely decentralised service structure for a given region but that the optimum configuration 61 
will generally be defined by some sort of hybrid constellation (Poustie et al. 2014, Sapkota et al. 62 
2015), also referred to as a distributed wastewater infrastructure (inter alia Tchobanoglous and 63 
Leverenz 2013). We define a system as being increasingly centralised as more elements are 64 
linked to it and interconnected (for an elaborate definition, see Section. 3.1). As a result, we are 65 
able to determine to what degree economies of scale in wastewater treatment drive 66 
infrastructural centralisation, or whether distributed systems may result in lower total system 67 
costs.  68 

Finding the ODC is methodologically challenging because of the large number of system 69 
alternatives that have to be considered. Very recently, scholars have started to tackle these 70 
complexities in integrated strategic planning by means of exploratory modelling techniques 71 

                                                      
1 Examples can be found in the field of transportation (Rodrigue et al. 2013), in heating and energy systems 
(Hughes 1983, Gochenour 2001, Hawkey 2012) as well as drinking and wastewater systems (Lofrano and 
Brown 2010, Geels 2006). 
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(Urich and Rauch 2014). Still, only few tools (for exceptions see inter alia Zeferino et al. 2010, 72 
Sitzenfrei et al. 2013, Urich and Rauch 2014) are currently available to determine optimal 73 
combinations of these alternatives, especially if we consider real-world data. The main focus of 74 
the present paper is to introduce the SNIP methodology and apply it to the case of wastewater 75 
management. These systems are highly suitable infrastructures for studying ODC. The sector has 76 
developed a strongly centralised paradigm in many industrialised countries, which has frequently 77 
led to connection rates above 95%. However, fully functional decentralised alternatives have 78 
emerged only recently and their longer-term contribution to wastewater treatment is still 79 
unknown. Finally, centralised infrastructures are coming to the end of an investment cycle, and 80 
many communities in the industrialised world have to consider whether and how they want to 81 
reinvest in their existing systems (OECD 2006/7, Urban Land Institute and Ernst&Young 2007). 82 
This question is also relevant for other network infrastructures such as electricity, heating or 83 
water supplies.  84 
The current SNIP approach comprises a single-objective framework focusing exclusively on the 85 
minimisation of total system costs (compare inter alia Weber et al. 2007, Sapkota et al. 2013). 86 
SNIP could very well be expanded in a multi-objective approach, where a broader set of 87 
objectives could be included in the cost or objective function. However, many of the key 88 
objectives, such as performance, failure frequency or environmental effects of distributed 89 
wastewater systems are not trivial to assess and their inclusion in the text would greatly exceed 90 
the scope of this paper. Our approach limits itself to determining the ODC only from a cost 91 
efficiency point of view. 92 

The manuscript is structured as follows: in the remainder of Section 1 we further specify the state 93 
of the literature on determining ODCs for network infrastructures. In Section 2 we present the 94 
SNIP model in detail. Sections 3 and 4 present real-world and virtual case studies to illustrate the 95 
performance of the approach. Section 5 concludes this study specifying the further development 96 
steps of the methodology. 97 

1.2 Location Problem in the Field of Wastewater Management 98 

Finding the ODC for wastewater infrastructures involve questions of optimal geographical 99 
placement, sizing and number of facilities and can be seen as a location model. Different types of 100 
location models exist, whereas a model designed to minimize total facility and transportation 101 
costs is defined as a fixed-charge location problem (Current et al. 2002).2 For an application in 102 
wastewater management, we define the facilities as wastewater treatment plants (WWTP) and 103 
understand sewer-related infrastructures as a means of transporting wastewater. It is extremely 104 
difficult to solve these kinds of optimum location models because they are NP-complete. The 105 
most important aspect of NP-complete problems is that we cannot solve them deterministically 106 
in polynomial time (Garey and Johnson 1979). Therefore finding solutions results in a high 107 
computational burden for any application that involves realistic data sets. One way to solve these 108 
problems is by looking for approximate solutions with the aid of heuristics. Given the complexity 109 
of the problem of determining the ODC, finding approximate solutions with the aid of heuristics 110 
is already a big step forward. Approximate solutions may still be very useful for decision makers 111 
at those points in time when strategic decisions must be made. 112 
                                                      
2 Fixed costs are assumed for locating a facility at a candidate site. For a detailed problem formulation, see 
Daskin (1995). 
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Compared to other network infrastructures, the management of wastewater has some specific 113 
characteristics: 114 

 There exists a long-known economic trade-off between installing wastewater treatment 115 
plants and extending the sewer network (inter alia Converse 1972). The literature 116 
suggests high economies of scale in the treatment of wastewater but a tendency for 117 
diseconomies of scale in the construction of sewer networks. This trade-off is further 118 
aggravated as typically more than 80% of the investment costs have to be spent on sewer 119 
infrastructures (Maurer et al. 2006). These cost calculations are based on typical 120 
infrastructure lifetimes of 25 years for WWTP and 80 years for sewers. 121 

 Water is quite bulky and heavy per source (household) and wastewater generation rates 122 
vary depending on the geographical context (UNEP 2015). As a consequence, topography 123 
has a strong influence on network costs, especially as gravity-driven sewers are the 124 
preferred type of transportation. 125 

 Sewers are usually considered to have a relatively high average life-span of about 80 126 
years compared to approximately 25 years for large scale WWTP. Larger uncertainties are 127 
attributed to the life expectancy of smaller WWTP. 128 

1.3 Critical Literature Review 129 

Despite the fact that the problem of finding the ODC has been raised repeatedly (inter alia by 130 
Downing 1969, Gawad and Butter 1995, Ambros 1996) in various technological fields, only little 131 
research has actually been conducted into this topic. However, we notice that researchers are 132 
increasingly focusing on the transition to more decentralised systems (inter alia Sitzenfrei and 133 
Rauch 2014, Bach et al. 2013) and the question of the sustainability of the degree of 134 
centralisation (inter alia Poustie et al. 2014). 135 

The issue of the optimal degree of centralisation is crucial for many network based 136 
infrastructures. Therefore, before focusing on the literature in the field of wastewater we will take 137 
a look at the available literature in other fields, especially that of electricity infrastructures. 138 
Although a comparison with other infrastructures such as water distribution systems (inter alia 139 
Ostfeld 2015) would be interesting, we believe that the link to the energy literature is especially 140 
fruitful given its extensive use of heuristic approaches. 141 

Recently, discussions about centralised versus decentralised technologies have taken place in the 142 
fields of electricity network infrastructures (Kocaman et al. 2012, Levin and Thomas 2012, Sanoh 143 
et al. 2012, Parshall et al. 2009, Deichmann et al. 2011), hydrogen distribution networks (Johnson 144 
et al. 2008, Stiller et al. 2010, Baufumé et al. 2013) and district heating (Möller and Lund 2010, Gils 145 
et al. 2013, Nielsen and Möller 2013). Different types of methodological approaches such as 146 
mixed integer programming, branch and bound methods or heuristic algorithms are used to 147 
determine the optimal outlays for these infrastructures (Kocaman et al. 2012). 148 

Zvoleff et al. (2009) use a heuristic network algorithm to access the impact of geography on 149 
infrastructure costs and suggest a linkage between the increasing distance per building 150 
connection (marginal distance) and the increasing percentage of the connected population. The 151 
marginal distance indicates when connection expenses become unreasonable, thus making a 152 
decentralised option economically preferable. Levin and Thomas (2012) use similar techniques 153 

http://doi.org/10.1016/j.watres.2015.07.004
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and create a least-cost transmission network for connecting a given fraction of the population. 154 
Even though the authors include decentralised technologies, they do not consider multiple 155 
disaggregated networks. In contrast, Sanoh et al. (2012) and Parshall et al. (2009) start from a 156 
pre-existing network and try to determine whether specific still-unconnected nodes are better 157 
served with a decentralised option or a network extension.  158 

The most comprehensive approach so far considers multiple transformer stations and network 159 
sizes to determine the optimal infrastructure outlay (Kocaman et al. 2012). The authors use an 160 
agglomerative hierarchical clustering method to find optimal locations of transformers and 161 
minimize overall grid costs. This approach consequently results in networks of various sizes and 162 
thus produces hybrid solutions. Its limiting factor is the large computation burden when the 163 
restrictions are more complex or the algorithm is not based on straight-line distances alone.  164 

For wastewater management, network infrastructures (simulated or pre-existing) are also 165 
needed to estimate centralised and decentralised costs. For a recent overview of integrated 166 
urban water modelling techniques we refer to Bach et al. (2014). Even though a number of 167 
innovative methods are available to design and automatically generate different kinds of network 168 
infrastructure such as drinking water (inter alia Urich et al. 2010) or sewer networks (inter alia 169 
Blumensaat et al. 2011, Bach et al. 2014)3, they are not used to address the question of the ODC. 170 
With the few exceptions listed below, no geographically explicit analysis of where to treat 171 
wastewater in a more decentralised or centralised manner has yet been systematically 172 
elaborated. Brand and Ostfeld (2011) point out the general lack of optimisation models 173 
incorporating all the most basic system components such as sewers, WWTP and pumps at the 174 
same time, and Sitzenfrei et al. (2013) observe that tedious handling and processing of explicit 175 
geographic data is required to generate cost estimates for centralised infrastructures. 176 
Nevertheless, there are important exceptions in the literature which cover the optimisation of 177 
wastewater infrastructure: Schiller (2010) uses GIS to determine where to start a transition 178 
towards decentralised wastewater management systems from existing sewer networks in case of 179 
a shrinking population. Zeferino et al. (2010) consider hybrid solutions and use simulated 180 
annealing to determine different optimal system configurations in a multi-objective framework. 181 
Leitão et al. (2005) compare a drop and a add algorithm to solve a location model at regional 182 
level.  183 

1.4 Original contribution of the presented SNIP model 184 

A brief overview of the literature on heuristic network optimisation shows that only few 185 
approaches consider hybrid constellations. In combination with sewer modelling, we can deduce 186 
four main shortcomings in the literature that the SNIP approach takes as a starting point: 187 

 Even though a number of innovative methods exist to model sewer systems, only few of 188 
them explicitly address the ODC.  189 

                                                      
3 Two sewer modelling approaches can be distinguished, namely those that model actual case-specific 
sewer systems and those that estimate the material stock of the sewer infrastructures with the aid of 
virtual network layouts. As we focus on the optimisation process, and the detailed network design is of 
secondary interest, we refer to Maurer et al. (2012) for an overview.  

http://doi.org/10.1016/j.watres.2015.07.004
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 Most optimisation approaches apply a dichotomic perspective, whereas real cases 190 
require hybrid constellations such as distributed wastewater systems with self-contained 191 
wastewater networks for any given landscape.  192 

 The optimisation rule in most ODC models is limited to investment costs and straight-line 193 
distance calculations on flat terrain. Further costs are calculated independently of the 194 
position in the network and (dis-)economies of scale are not considered.  195 

 A common limitation of all the approaches to network infrastructures (wastewater or 196 
other networks) mentioned so far is that they do not consider changes occurring in the 197 
physical network properties as the size of the network changes.  198 

2 Model Description 199 

2.1 Optimisation Function 200 
The SNIP algorithm is based on cost and sewer-design assumptions and aims to determine the 201 
ODC by minimizing the overall system costs (C) of a wastewater system by considering the costs 202 
of WWTP of varying sizes, pumping and sewer costs. We solve the cost objective function (Eq. 1) 203 
by numerical computation. 204 
 205 

                        Min  C �NWWTP, VWWTP, l, d, ,  VPUMP, H�                         (1) 

where the total system costs C depend on the number of WWTP (NWWTP), the wastewater volume 206 
treated per WWTP (VWWTP), the sewer network length (l), the sewer diameters (d) , the pumped 207 
volume (VPUMP) and the pump head at the duty point (H). 208 
 209 
In each iteration step i, the values of the variables are changed and the new cost function Ci + 1 is 210 
generated and compared to Ci. The iteration stops when Ci+ 1 ≥ Ci (see Fig. 1). 211 

 212 

2.2 SNIP Algorithm Modules 213 

The SNIP algorithm is partitioned into two main consecutive functional modules, namely the 214 
expansion module (EM) and the merging module (MM) (Fig. 1). The EM is responsible for 215 
calculating a first system outlay whereas the MM improves overall cost savings by merging or 216 
agglomerating WWTP. 217 

In a first step, the EM determines an initial set of WWTP and sewers which are defined from the 218 
bottom-up with shortest path-finding algorithms. In a second step, the MM looks for further cost 219 
savings by checking the potential merging of WWTP by means of heuristic agglomerative 220 
hierarchical clustering (Kaufman and Rousseeuw 2005).  221 

Both modules execute sub-modules: the path-finding module (PFM) determines the path along 222 
which sewers are constructed. The system option module (SOM) identifies potential system 223 
options and the cost module (CM) determines the overall costs of each option. The algorithm 224 
terminates when no further cost decreases can be achieved by merging any WWTP.  225 

The two main modules use greedy algorithms: these are characterized by the assumption that 226 
selecting the best-looking choice at each iterating step of the optimization procedure will yield an 227 
optimal global solution (Cormen et al. 2009). The assumption that local optimal choices result in a 228 
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globally optimal solution is not generally true, even though it may be valid for many problems 229 
(Cormen et al. 2009). Given the problem complexity, finding reasonably approximate solutions is 230 
the only way forward given the restrictions of computation time. As decisions made in the EM can 231 
be altered in the MM, SNIP is neither an add nor a drop algorithm (Daskin 1995), but a mixture of 232 
both. 233 

In the following sections, we describe the algorithm workflow with all sub-processes in more 234 
detail. 235 

 236 

2.2.1 Expansion Module (EM) 237 

The EM is based on Prim’s algorithm (1957), which is well-known and widely applied in 238 
infrastructure planning and graph theory. It represents the sewer network as edges and houses, 239 
and WWTP as nodes. It then calculates a graph which connects all nodes with minimal edge 240 
weights to produce a minimum spanning tree (MST). Edge weights are generally derived from 241 
straight-line distances between nodes, but they can represent any metric such as time or costs. 242 
Prim’s algorithm thus allows a least-cost network connecting all nodes to be found.  243 
 244 
The use of gravity-driven sewer lines means that the actual path between two nodes may not be 245 
a straight line. So costs cannot be derived linearly from straight-line distances, and this makes it a 246 
complex task to attribute real costs to each edge. Thus sewer costs may depend on the direction 247 
of flow, the trench depth and any height differences encountered. More sophisticated methods 248 
are consequently needed for estimating costs.  249 

We choose the following five-step approach to build a minimum network representing sewers 250 
and WWTP in a simplified manner (cf. Fig. 1): 251 

Step I: We first select a starting node (household).4 We then determine the minimum 252 
connection costs between this node and all still un-connected nodes. As the distance is 253 
important, the classical Prim-based approach of approximating connection costs between two 254 
nodes with straight-line distances seems plausible. Thus the assumption is made that the closest 255 
node is the best one for iteratively considering a network connection. In contrast to Prim’s 256 
algorithm, we ask in each iteration whether a connection leads to cost minimisation, an approach 257 
which resembles the clustering idea of Zahn (1971), who removes edges from a fully calculated 258 
MST. 259 

Step II: The sewers between the two detected nodes from Step I are designed with the 260 
path-finding module. The PFM determines the path with the aid of the street network and a 261 
digital terrain model (DTM). The motivation to use the street network is the close linkage between 262 
the two networks that is often found (Blumensaat et al. 2011, Nielsen and Möller 2013). However, 263 
this assumption may not always be true, especially if the distance along the street network is 264 
significantly longer where no street exists.  265 
                                                      
4 Due to the heuristic nature of the algorithm, the result is dependent on the starting node. Therefore we 
recommend that the algorithm be run with different starting nodes even though our case study results 
indicate low effects (Appendix B). Due to the logic of the algorithm, it makes sense to start at a node which 
lies in an area of high node density. These areas offer a greater chance that the total system costs will 
decrease by connecting nodes. 
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Our algorithm first identifies the direct distance ddirect between the two nodes from step I. The 266 
Dijkstra Algorithm (Dijkstra 1959) is applied to a street network to find the shortest distance 267 
between the next node to connect and the existing sewer network (dstreet). The decision as to 268 
which sewer path to take is based on the ratio fstreet between the direct distance (ddirect) and the 269 
distance along the street (Eq. 2). 270 

                                                                       fstreet     =  
dstreet
ddirect

                                                             (2)    

We derive fstreet by comparing existing connection ratios in a given sewer network for an area of 271 
interest. So by changing this ratio, we can adapt the sewer design to local design practice. If fstreet 272 
is larger than the derived ratio, an alternative sewer path following the local topography is 273 
calculated with help of the a* algorithm (Hart et al. 1968). 274 

For the 3D path-finding methodology along the terrain, we build a graph from the raster-based 275 
DTM on which each centre raster point links all neighbouring cell centre points (queen 276 
neighbourhood) (Leitão et al. 2005). We derive the edge weights of the resulting graph from the 277 
height difference ∆h between the raster cells and a weighting factor ftopo used to calculate a 278 
weighted distance dw (Eq. 3). 279 

                                                                     dw  =  ddirect|∆h|ftopo                                                                   (3)    

where ftopo can be altered depending on how closely the sewers should follow the topography. 280 
More sophisticated methods, such as land data use, could be applied to determine the weighting 281 
on anisotropic surfaces (Yu et al. 2003). However, the weighting is not of primary interest in this 282 
paper and the only restriction is that sewers cannot cross raster cells of the DTM containing 283 
buildings. 284 

Step III: After the sewer path has been determined, three system options are always 285 
identified with the System Option Module (SOM, explained in Section 2.2.2), namely an option 286 
without sewer expansion and two options with a sewer expansion in either direction. We use the 287 
term system option to describe one system configuration. As different system options are 288 
available for selection in each iteration, this allows a cost-optimised system to be selected locally. 289 

Step IV: Operation costs and replacement costs are attributed to the design alternatives 290 
defined in step III with the aid of the cost module (Section 2.2.4). 291 

Step V: The choice for one of the options designed in Step III is made by considering 292 
reasonable costs (cfrc). These costs are politically defined per capita cost values, which decide 293 
whether a decentralised option may be legally considered. Below that value, sewer connections 294 
are enforced. Similar criteria, such as distance measures, are used in many countries in what is 295 
known as the mandatory connection rule (e.g. Switzerland, Germany and Austria).  296 
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 297 
 298 

 299 
Figure 1: SNIP algorithm workflow. The EM calculates an initial network layout until all nodes 300 
have a sanitation solution, while the MM optimises the infrastructure layout generated by the 301 
EM. 302 
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 303 

2.2.2 System Option Module (SOM) 304 

The SOM creates different system options on the basis of the two nodes considered for 305 
connection in each iteration of the EM. A local competitive choice is then made from these 306 
options on the basis of cost calculations relating to all system elements. The modelled system 307 
elements are gravity driven and pressurized sewage pipes and WWTP. See Table 1 for all 308 
parameters influencing the design of the sewage system. 309 

In each iteration, only two nodes are considered for designing system alternatives: this results in 310 
three possible options (Fig. 2). For two of these, the two nodes are connected and the network is 311 
consequently expanded. The existing WWTP is then either enlarged (option A), or else abandoned 312 
and a new one is built in the new node (option C). Alternatively, the new node is not connected 313 
and serviced by a separate WWTP (option B).  314 

 315 
Figure 2: System design options (SOM module) for an exemplary initial situation. Options A and C 316 
show a network expansion in combination with a WWTP enlargement. In option B the network is 317 
not enlarged and a new WWTP is installed instead. 318 

 319 

2.2.3 Merging Module (MM) 320 

In the second step of the algorithm (see lower part in Figure 1), the MM optimises the 321 
configuration found by the EM by merging WWTP based on agglomerative hierarchical clustering 322 
(HAC), where we consider each WWTP with the corresponding network as a cluster. The 323 
motivation to merge plants lies in the economies of scale achieved as the per capita treatment 324 
costs decrease with growing networks and consequently larger WWTP.  325 

HAC is a distance-based bottom-up clustering algorithm in which each single object is treated as 326 
a cluster and then iteratively agglomerated until all objects are either merged or the algorithm is 327 
aborted on the basis of defined criteria (Manning et al. 2008). A typical property of HAC 328 
algorithms is that the number of clusters does not need to be defined a priori, which suits our 329 
need to find the optimal number of plants. The challenge of HAC methods is finding dissimilarity 330 
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coefficients for cluster building. These coefficients reflect the dissimilarity between clusters and 331 
are often obtained from distance calculations or more complex computations (Kaufman and 332 
Rousseeuw 2005). For this study, we define the connection costs between WWTP as 333 
dissimilarities.  334 

Because of the high calculation intensity of testing all merging possibilities or calculating the 335 
dissimilarity coefficients of all WWTP in each iteration, a heuristic selection of possible merges is 336 
made in the MM. The selection takes place in three major steps (compare Fig. 1): 337 

Step I: As possible economies of scale can most probably be exploited by merging larger 338 
plants, each merge check is always started with the largest WWTP and is terminated as soon as 339 
all plants have been checked. 340 

Step II: The three most promising WWTP to be considered for merging are determined 341 
with the aid of the SOM. The SOM finds the closest WWTP, the WWTP of the closest sewer 342 
network and the network with the highest merging potential fMergePot. This potential is a distance-343 
to-WWTP size ratio and is expressed as (Eq. 4) 344 

fMergePot = d ( WWTPsize) − fmerge   (4) 

where d is the distance between two nodes, fmerge the weighting factor and WWTPsize the size of a 345 
WWTP given in population equivalents. The exponent fmerge allows us to increase the weighting 346 
for the size of the WWTP, thus decreasing the importance of the distance when choosing a WWTP 347 
to merge. This means that a higher merging potential is assigned to larger and more distant 348 
WWTP. We consider distance and size to be good criteria for selecting WWTP as the high cost of 349 
connecting more distant WWTP could be compensated thanks to economies of scale in 350 
wastewater treatment. Figure 3 explains the various possibilities of the SOM. Let us consider 351 
facility C in the illustrated example and determine the three WWTP to be checked for a merge. 352 
The closest facility is B, the facility with the closest sewer D and the facility with the best merging 353 
potential index is A because of its larger size.  354 

Step III: The WWTP identified in Step II are tested for a merge. The sewer path between two 355 
WWTP is derived from the PFM (IIIa), the sewage system options found (IIIc) and the costs 356 
calculated (IIId). In the process of finding interconnecting sewer paths between WWTP, other 357 
sewer networks may be crossed. In such cases, the intersected network elements are removed 358 
from the current network (IIIb) and are reconnected with the EM in case of reduced system costs. 359 
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 360 
Figure 3: Exemplary representation of the WWTP selection by the SOM heuristic for WWTP C. B is 361 
closest to C, D has the closest network to C whereas A has the best merging potential for C due to 362 
its size (see Equation 4). 363 
 364 

2.2.4 Cost Module (CM) 365 

The SNIP algorithm finds an optimal wastewater management configuration by minimizing 366 
operation and capital replacement costs, which are calculated with help of the CM. In order to 367 
compare the different costs, we calculate the total replacement costs and convert them to 368 
equivalent uniform annual cash flows or annuities. The annuities A can be calculated from a net 369 
present value (NPV) written as (Eq. 5) (Crundwell 2008). 370 

                                         A = NPV
qn(q − 1) 

qn − 1                                                       (5) 

where q is the (real) interest rate + 1 and n the number of years for depreciation. All local 371 
currencies are converted to US$ using purchase power parities for the year 2013 (World Bank 372 
2014). All cost factors used are listed in Table 1. 373 

2.2.4.1 Sewers 374 

As sewer construction costs depend on numerous factors, it is problematic to derive general 375 
costs. We reduce the cost factors to the trench depth, pipe diameter and sewage pipe length in 376 
accordance with a cost model from the case study area (AWA 2001) which relies on Swiss sewer 377 
construction standards. The sewage replacement costs c are calculated with the aid of the 378 
average trench depth Tavg and the cost coefficients a and b relating to the pipe diameter (Eq. 6):  379 

c =  a T𝑎𝑣𝑔 + b (6) 

We calculate the sewer diameters using a standard engineering approach according to Manning-380 
Strickler (compare for example Maurer et al. 2012). A maximum trench depth restriction TDmax 381 
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prevents the construction of sewage pipes too deep underground. If the minimum slope 382 
restriction (fminslope) cannot be maintained because of TDmax, the wastewater is pumped. The 383 
parameter fminslope describes the slope of the sewers which need to be constructed in order to 384 
allow gravity-driven flow. Therefore  fminslope does not represent the slope of the terrain. In case of 385 
steep terrain, the sewer slope is similar to the terrain slope. In flat terrain, the slope corresponds 386 
to the value given by fminslope. Sewer operation costs are taken from the literature and set to 387 
average costs per meter per year (VSA 2011) (see Appendix A). 388 

2.2.4.2 Pumps 389 

Wastewater is pumped wherever the topography does not provide enough downward gradients. 390 
We use a very simplified approach for calculating pumping costs. Given the genericness of the 391 
plain model design, we do not consider costs resulting from the need to provide pumping 392 
redundancy, potential wastewater storage costs for pump sumps, or cost differences depending 393 
on the pump size. Furthermore, we do not consider economies of scale, but only assign a fixed 394 
cost for a pumped volume. As a consequence, SNIP does not minimize the number of pumps but 395 
only the sewer length where pumping is required. Further SNIP generally neglects different kinds 396 
of implications such as odour problems or hygienic challenges resulting from long residence 397 
times. 398 

We choose a methodology to estimate the needed power input Pgr from a standard engineering 399 
sewage pumping handbook (for example Grundfos 2014) (Eq. 7): 400 

                                                                       Pgr =  
g Q H

ngr ∗ 1000
                                                               (7) 

Pgr: motor power input [kW] 401 
Q: pump volume flow at duty point [l/s] 402 
H: pump head at duty point [m]  403 
g : gravitational constant [m/s2] 404 
ngr: overall energy conversion efficiency 405 
 406 
The total cost of the energy consumption for one year is calculated by multiplying Pgr with the 407 
running time per year and the specific average pumping costs. 408 

 409 

2.2.4.3 Wastewater treatment plants 410 

According to Friedler and Pisanty (2006), WWTP cost functions are best expressed by a power law 411 
(Eq. 8) 412 

c = axb   (8) 413 

where the costs c are estimated by defining x as the plant capacity in population equivalents and 414 
using the cost coefficients a and b.  415 

http://doi.org/10.1016/j.watres.2015.07.004


Published in Water Research (http://doi.org/10.1016/j.watres.2015.07.004) – Eggimann et al. 2015 
 

14 
 

We found it challenging to determine a single generic cost function over the entire range of 416 
possible WWTP sizes. The available data indicate that smaller package treatment plants show a 417 
different cost scaling behaviour than the larger custom-built ones. The operating-cost and 418 
replacement-cost functions for the WWTP used in this paper are taken from VSA (2011) derived 419 
from larger WWTP. 420 

 421 

 Symbol Unit Base scenario value Considered limits in 
eFAST analysis      

Lower Upper 

Design Parameters 
   
  Maximum trench depth  
  Minimum trench depth  
  Minimum slope  
  Sewer design factor 
  Sewer design factor 
  Merging factor 
  Wastewater production 
  Strickler coefficient  
  Pipe diameter 
 
Cost Parameter 
 
  Sewers 
    Sewer operating costs (VSA 2011) 
    Sewer pipe lifespan (Maurer and Herlyn 2006) 
    Sewer replacement value (AWA 2001) 
 
  Sewage pumps 
    Electricity costs (BFE 2011) 
    Pumping operation cost function (Grundfos 2014) 
 
  WWTP 
    WWTP operating cost (VSA 2011) 
    WWTP replacement value (VSA 2011) 
    WWTP lifespan (Maurer and Herlyn 2006) 
 
  Other Parameters 
    Real interest rate (Maurer and Herlyn 2006) 
    Reasonable costs (AWEL 2005) 

 
 

Tmax 
Tmin 

fminslope 

fstreet 

ftopo 
fmerge 

Qww 

kst 

d 
 
 
 
 
- 

cfsewerlifespan 
cfsewer 

 
 
- 
- 
 
 

cfwwtpopex 

cfwwtpcapex 
cfwwtplifespan 

 
 

cfinterest 
cfrc 

 
 

m 
m 
% 
- 
- 
- 

m3d-1 capita-1 
m1/3s-1 

m 
 
 
 
 

$m-1 
y 
% 
 
 

$kWh-1 
kWh 

 
 

% 
% 
y 
 
 

% 
$ 

 
 

8 
0.25  

1 
1.7 
1.4 
3 

0.162 
85 

standard values 
 
 
 
 

3.6 
80 
0 
 
 

0.14 
Section 2.2.4.2 

 
 

0 
0 

33 
 
 

2 
5357 

 
 

8  
-  
1  
1  
1  
1  

0.1 
- 
- 
 
 
 
 
- 

60 
- 20 

 
 
- 
- 
 
 

- 20 
- 20 
30 

 
 

0 
0 

 
 

12 
- 
3 
5 
2 
5 

0.4 
- 
- 
 
 
 
 
- 

100 
+ 20 

 
 
- 
- 
 
 

+ 20 
+ 20 
40 

 
 

6 
14286 

 422 
Table 1: Cost and design-related model parameters. The considered standard pipe diameters are 423 
(in m): 0.25. 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. 1, 1.2, 1.5, 2, 2.5, 3, 4, 6, 8.  424 

3 Materials and Methods 425 

In order to test the adequacy of the SNIP algorithm, we carried out the following analysis steps. 426 
First we defined the degree of centralisation. Second we determined the influence of SNIP 427 
variable changes with the aid of a sensitivity analysis in order to determine whether we could 428 
distinguish between important and less important variables. Third, we conducted a total of 250 429 
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model runs for different topographies in order to determine whether SNIP gives reasonable 430 
representations of possible WWTP and sewer outlays. 431 

3.1 Defining the Degree of Centralisation  432 

The current discussion about central or decentral infrastructure planning is often fuzzy due to a 433 
lack of clear definitions. In practice, simple measures, such as the dimension (e.g. treated volume) 434 
or vague terms relating to the served area (e.g. small) or distance (e.g. close) are often used to 435 
define decentralised treatment plants (cf. Makropoulos and Butler 2010, DIN 4261 2010, EPA 436 
2005, Cook et al. 2009). However, such a definition is problematic in two ways: first, the 437 
understanding of the terms “centralised” or “decentralised” depends on the chosen system 438 
boundaries, as we can define a continuum of different wastewater system scales (Hamilton et al. 439 
2004). Second, the definition of the ODC is often limited to two categories: a source is either fully 440 
connected or entirely decentralised. Such a dichotomic definition of system alternatives is 441 
unrealistic as a whole range of intermediate solutions may be possible. 442 
 443 
A more systematic definition taking into account the continuum of possible facility sizes is 444 
adapted from Ambros (1996) (Eq. 9): 445 

      DC =  
∑ Ni
n
i=1 − ∑

Mj
Bj

m
j=1

∑ Ni
n
i=1

  

(9) 

  

where we define a weighted degree of centralisation (DC). For this paper, M denotes the volume 446 
of wastewater which needs to be treated at a sink (treatment plant), N the volume of wastewater 447 
originating from a source (household) and B the number of sources connected to a sink. We sum 448 
over all sources (i = 1,…,n) and sinks (j = 1,…,m). Compared to the original definition, the DC allows 449 
us to consider different source weights, as the required wastewater quantity to be treated at the 450 
sources may differ. If DC is 0, we find complete decentralisation with a sink placement at each 451 
source. If treatment takes place only outside the considered area, the DC reaches 1 (Fig. 4).   452 
 453 

 454 
Figure 4: Example calculations of DC. The characteristic of DC can be seen in the situation in the 455 
middle, where on average two nodes are connected to a plant, but we calculate a value higher 456 
than 0.5 because of the merging of nodes with higher weights. 457 

 458 
 459 
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3.2 Case Studies 460 

In order to test SNIP under varying system conditions, we introduce virtual case studies (Section 461 
3.2.1) and apply SNIP to a real-world case (Section 3.2.2). It is problematic to validate the model 462 
results with real world data because existing systems have grown historically and mostly 463 
constitute combined sewer systems. This means that even newly designed systems would look 464 
different. An advantage of the virtual case study approach is that we can easily generate and test 465 
SNIP for a broad set of different conditions. On the basis of the real world application, we can 466 
show the potential of SNIP for a given Swiss context in an exemplary way. 467 

3.2.1 Virtual Case Studies 468 

In order to better understand our algorithm, we generate contrasting virtual cases with real 469 
world topographies but virtual settlement distributions and use face validation to see whether 470 
the input-output relationships of the model are reasonable (Sargent 1991). The virtual case study 471 
allows us to observe whether the model can be sensibly applied in different contexts considering 472 
completely different topographies or settlement distributions. We use the ruggedness terrain 473 
index (RTI) (Riley et al. 1999) and the vector ruggedness measure (VRM) (Sappington et al. 2007) 474 
to quantify terrain complexity, and the nearest neighbour index (NNI) (Clark and Evans 1954) to 475 
quantify the degree of clustering of the inhabited buildings.  476 

The virtual case studies (Fig. 5) are created as follows: we select four clippings (of 9 km2 each) 477 
from the digital elevation model of Switzerland and the respective street networks. By calculating 478 
the RTI and VRM, we are able to select topographically contrasting cases. We then create 479 
different virtual settlement distributions (with 200 buildings) on the selected clippings with 480 
nearest neighbour indices ranging from 0.2 to 1. We assume that the amount of wastewater flow 481 
is equal for each building. 482 
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 483 
 484 
Figure 5: Overview of virtual case studies. A different exemplary settlement distribution is 485 
displayed for each topography. We use real world topography and street networks but 486 
redistribute the buildings in order to achieve a different source clustering. 487 

  488 

 489 

 490 
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 491 

3.2.2 Real World Case Study 492 

The SNIP model was applied to the community of Trubschachen (~1500 inhabitants, 365 493 
buildings) in the Emmental region of western Switzerland. This region is hilly, relatively sparsely 494 
populated and makes network infrastructure planning challenging because of its complex 495 
topography and settlement distribution. Today’s relatively high presence of on-site solutions in 496 
this region already indicates a borderline situation for the central network paradigm. Based on 497 
the current distribution of small WWTP and network outlay of Trubschachen, we calculate the 498 
actual DC as 0.85. 499 

We assign an average wastewater production to the number of people living in a building. Access 500 
to population distribution data on a high spatial scale is often problematic either because of 501 
missing data or due to privacy concerns. Therefore we spatially disaggregate the population with 502 
the aid of a dasymetric mapping technique developed by Lwin and Murayama (2009). 503 

We run a variance-based sensitivity analysis in order to quantify the total effect of each 504 
parameter on the model output for the real world case study. The extended Fourier Amplitude 505 
Sensitivity Test (eFAST) of Saltelli et al. (1999) allows us to cope computationally with a large 506 
number of factors and take the interactions between them into account (Crosetto et al. 2000). 507 
The analysis is performed in R with the R package “sensitivity” of Pujol (2014). As there is no exact 508 
rule for finding an adequate sample size of eFAST, we use a number close to the minimum 509 
known value (Marino et al. 2008). For eFAST, we do not consider changing starting nodes and 510 
start with a node located in a densely populated area. 511 

3.3 Data and Software 512 

SNIP was developed to be as economical as possible with regard to data requirements. All data 513 
are generally easily accessible and were obtained from the Swiss Federal Office of Topography 514 
(see Appendix C). SNIP is implemented in Python 2.7.3. ArcGIS® 10.2 is used for reading and 515 
visualisation purposes. 516 

4 Results and Discussion 517 

4.1 Sensitivity Analysis 518 

The result of the sensitivity analysis in Table 2 for the real world case study shows that sewer 519 
design factors have a predominantly greater effect on the ODC even though the differences 520 
between individual factors are generally not very distinct. The analysis shows that the sewer 521 
design factor fstreet (main effect of 0.34) that characterises when to follow the street and when to 522 
build sewers along the terrain has a particularly large impact on the ODC. This emphasises the 523 
importance of determining the relationship between the given street network and the sewer 524 
outlay for each case study. Similarly, other sewer-related design factors such as the minimal 525 
slope, fstreet (main effect of 0.20), or the maximum trench depth Tmax (main effect of 0.16) are also 526 
sensitive. The high general interaction effects of all parameters, indicating a high correlation 527 
between them, are not unexpected, as many of these parameters have a direct influence on 528 
costs, and thus to a change of DC. As many of these parameters relate to real-world 529 
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characteristics, it is possible to treat them as input parameters and obtain sensible values for a 530 
given application case. As a consequence, only three ‘real’ model parameters remain, ftopo, fmerge, 531 
and fstreet, all three of which are sensitive and correlated with other parameters. 532 

 533 

Parameter Description Main 
Effect 

Interaction effect 

Qww 
cfwwtplifespan 
cfwwtpopex 
cfsewer 
cfsewerlifespan 
cfinterest 
ftopo 
cfwwtpcapex 
fmerge 
Tmax 
cfrc 
fminslope 
fstreet 

Wastewater production 
WWTP lifespan 
WWTP replacement value  
Sewer replacement value 
Sewer pipe lifespan 
Real interest rate 
Sewer design factor 
WWTP replacement value  
Merging factor 
Maximum trench depth 
Reasonable costs 
Sewer design factor 
Sewer design factor 

0.0364 
0.0665 
0.0881 
0.0884 
0.0886 
0.0973 
0.0993 
0.1318 
0.1518 
0.1567 
0.1762 
0.1977 
0.3408 

 

0.4390 
0.4928 
0.4104 
0.5283 
0.4113 
0.8000 
0.5585 
0.4111 
0.6279 
0.5760 
0.6142 
0.5927 
0.8657 

Table 2: eFAST results (sample size = 70). See Table 1 for a more detailed description of the 534 
parameters. 535 

4.2 Face Validation Virtual Case Studies 536 

We are testing the proposed SNIP algorithm in the four virtual case studies shown in Fig. 5. They 537 
differ with respect to terrain ruggedness and source clustering. We expect lower degrees of 538 
centralisation (lower DC values) wherever we encounter high terrain complexity and distributed 539 
sources due to higher network construction costs. We find this general pattern to be true for our 540 
virtual case studies. Figure 6 shows a very distinctive dependency of DC on the NNI. The effect of 541 
the terrain complexity is much less visible. 542 

We notice that the DC does not always decline with increasing RTI values. Despite high RTI values 543 
due to large even flanks, such a topography favours gravity-driven sewer construction. This is 544 
reflected in the VRM index, which we use to distinguish steep even terrain from steep uneven 545 
terrain (Sappington et al. 2007). Therefore the choice of index matters when relating 546 
topographical complexity to DC. 547 

4.3 Real World Case Study 548 

We ran our algorithm for the community of Trubschachen and calculated an ODC of 0.76 549 
(Appendix B). Figure 7 shows annuities for different DC for this catchment. We see that the 550 
overall costs decrease with increasing centralisation due to a decrease of WWTP costs and a 551 
relatively slow increase in sewerage costs. This is valid to the proposed optimal centralisation 552 
degree where DC = 0.76. After this, the costs for sewer lines and pumping costs exceed the 553 
economies of scale of the WWTP. We have extended the calculations of the total system costs 554 
represented in Fig. 7 beyond the ODC in order to illustrate the consequences of forced 555 
centralisation and as well as to allow a comparison with the actual degree of centralisation. The 556 
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initial gradual decrease takes place in the EM whereas the cost drop at about 0.72 results from 557 
merging (agglomerating) WWTP within the MM. The increasing marginal sewer connection costs 558 
are particularly noticeable where DC is close to 1, which shows the high costs of connecting the 559 
most remote settlements. 560 

 561 

 562 
Figure 7: Total system annuities of Trubschachen as a function of DC. The cost shares of the 563 
different system elements shift with increasing DC from WWTP costs towards sewer and 564 
pumping costs until minimum total system costs are reached at DC = 0.76. 565 

 566 

The calculated DC is lower than the effective centralisation achieved in Fig. 8. We observe that 567 
sewers follow the street network in the urban area more closely and deviate more for single rural 568 
buildings, which is plausible and corresponds to the real situation (compare Blumensaat et al. 569 
2011). Figure 8 indicates that in reality more buildings were connected to the central system than 570 
the economically optimal number. In the real case, the implementation of sewer lines stopped 571 
only when pumping costs substantially increased. Visual inspection of Fig. 8 confirms that the two 572 
system settings differ mostly by quite remote settlements (blue sewers in Fig. 8). 573 

 574 
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 575 
Figure 8: Today’s wastewater system connecting the inhabited buildings (left) and optimum 576 
system design calculated with SNIP using the base parameters (right). We assume that all 577 
inhabited buildings which are not connected to the sewers currently have an on-site treatment 578 
solution. 579 

Nonetheless, the difference between today’s DC and the ODC fits well for Switzerland in general 580 
as well as for Trubschachen, whose wastewater infrastructure was largely built during the 581 
economic boom of the 1960s, 70s, and 80s, when on average 37% of wastewater evacuation 582 
costs was subsidized (Müller and Kramer 2000, Maurer and Herlyn 2006). Additionally, a lot of 583 
infrastructure was planned and built at a time when small treatment plants had a distinctly worse 584 
performance compared to large ones, which was the reason for the subsidies. So it is not 585 
surprising that today’s network system is over-dimensioned from a cost efficiency point of view. 586 
We see that SNIP allows decision makers to re-asses the economic efficiency of a given system 587 
and to consider disconnecting certain households or at least delay rehabilitation projects until 588 
decentralised systems can be implemented. 589 
 590 

4.4 Limitations and Research Needs 591 

These results highlight an important aspect of the SNIP approach, namely that it is a single-592 
objective approach exclusively focusing on cost minimisation and thus ignores other 593 
performance or sustainability goals that a wastewater system could fulfil. An important 594 
assumption underlying the current approach is that all possible system configurations (from fully 595 
centralised to fully decentralised) achieve the same performance. There are good indications that 596 
this last strong assumption might become superseded by current research efforts on small-scale 597 
treatment systems (see also Larsen et al. 2013).  598 

Other important limitations of the SNIP approach are:  599 

• The presented cases contained only foul sewers. For storm sewers, it is less a question of 600 
treatment than of transportation, and is dealt with in the literature (inter alia Urich et al. 601 
2013, Bach et al. 2014). Expanding SNIP with combined sewers is fairly simple, as it only 602 
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requires the design rain input for each source and the identification of suitable combined 603 
sewer overflow points. 604 

• It does not consider the currently existing network infrastructure. SNIP provides a 605 
pseudo- or quasi optimal situation for a given catchment, ignoring any transition 606 
scenarios needed to transform an existing infrastructure. 607 

• SNIP is static, ignoring dynamic changes in settlement patterns or changing input 608 
parameters. The results for the presented case studies show that changing settlement 609 
structures are of particularly great importance for the ODC. 610 
 611 

The last two points (transitions and scenario planning) in particular need to be addressed if SNIP 612 
is to serve as a more realistic planning tool. It is important to realise that SNIP cannot currently 613 
be seen as a prescriptive tool for system implementation, but more as a form of guidance about 614 
the momentary sensible extent of the network infrastructure. SNIP can contribute an additional 615 
perspective in a system planning process by providing cost-effective alternatives. We believe that 616 
SNIP not only has value for planning new infrastructure but also in guiding or stimulating 617 
infrastructure transitions for existing sewer networks. This is increasingly important in contexts 618 
where major investments need to be made in existing infrastructures. 619 

Additionally, more research is needed to determine better cost functions depending on the 620 
particular case study. Whereas we consider model uncertainty as a minor problem, the standard 621 
deviation of our random distribution in Fig. 6 and the starting node uncertainty in Fig. B.1 622 
indicate that different results may be obtained depending on the chosen input parameters. But 623 
we argue that such uncertainty could even serve as a valuable input for a planning process. 624 

There are a number of other ways in which the SNIP approach may be further developed. We 625 
especially see potential in broadening the set of criteria to address the sustainability of network 626 
infrastructure planning in a holistic way. 627 

 628 
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Figure 6: SNIP results for virtual case studies with different degrees of source clustering and 629 
different topographic complexities. We distributed 200 buildings and generated 50 model runs in 630 
each case. The error bars show the standard deviation of the 50 settlement distributions for each 631 
situation. 632 

5 Conclusions  633 

We present the heuristic SNIP algorithm as a tool to model the optimal degree of centralisation 634 
(ODC) for wastewater infrastructures. We consider the optimal number, placement and sizing of 635 
wastewater treatment facilities, gravity-driven and pressurised sewer networks as a fixed-charge 636 
location problem and use heuristics to find cost-minimised solutions.  637 

SNIP is generic and uses only basic data input, thus allowing easy transfer to other case studies. 638 
We find that the SNIP algorithm can generate interesting plausible suggestions for sewer 639 
networks on a small scale and also produce face-value plausibility in virtual case studies. In-depth 640 
analyses will need to follow in the event of possible implementation. The approach presented 641 
here considers economies of scale, calculates costs depending on network position and 642 
considers the influence of the topography on sewer design when addressing the question of 643 
ODC. Most importantly, it takes into account different sizes of treatment plants and is applicable 644 
to local scale analysis. It also allows us to go beyond the often fruitless discussion about the 645 
appropriateness of on-site versus fully centralised solutions. Moreover, the combination of 646 
quantitative measures for settlement distribution and topographic complexity used for the 647 
calculated ODC allows us to quickly derive estimates of the ODC for different case studies. The 648 
real-world application of SNIP to a Swiss community suggests that the prevailing sewer system is 649 
over-centralised. Thus the SNIP-ODC may guide decision-makers to ask the right questions about 650 
the cost-efficiency of the current infrastructure layout and demonstrates that questions relating 651 
to current planning approaches need to be addressed in more detail. Knowing the ODC 652 
represents valuable information, especially in those cases in which new infrastructure needs to 653 
be built or already built infrastructure has to be redeveloped.  654 

SNIP is based on heuristics, so the ODC solutions found are (pseudo-) optimal with regard to a 655 
rather restricted set of criteria. Even though its artificially generated wastewater systems are 656 
based on real world sewer-design principles, our model in no way replaces detailed engineering 657 
decisions on the ground. SNIP depends on generic design and cost parameters, and in 658 
combination with the model uncertainty it is obvious that DC values obtained can only be 659 
approximate.  660 

The application of tools such as SNIP is especially promising in the context of changing futures 661 
such as changing settlement patterns and shrinking or growing populations. SNIP has so far been 662 
applied on a local scale and needs to be extended to a regional scale. We believe that further 663 
improvement of our static one-dimensional optimisation process towards a multi-objective 664 
framework taking into account different context conditions will deliver insights into a possible 665 
sustainability transition (Coenen and Truffer 2012).  666 
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Appendix A  677 

 678 
 Figure A.1: WWTP capital expenditure cost curve from VSA (2011). 679 
 680 
 681 

 682 
 Figure A.2: WWTP operation expenditure cost curve from VSA (2011). 683 
 684 
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 687 
 688 
Figure B.1: Case study results for Trubschachen. We run SNIP from each start node (n = 362), 689 
which results in a DC ranging from 0.76 to 0.80 (x ̄ = 0.787, σ = 0.01) 690 
 691 
Appendix C 692 

Data Format Source 

Digital terrain model with a resolution of 25m x 25m 
Population data on community level 
Street network 
Buildings 

Raster 
- 
Vector 
Vector 

swisstopo 
swisstopo 
swisstopo 
swisstopo 

 693 
Table C.1: Data sets used for SNIP. 694 
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